Ir al contenido principal

Transformada Rápida de Fourier (FFT) - 1

Una de las cosas (de tantas y tantas) que me ha llamado siempre la atención son los temas relacionados con DSP (Digital Signal Processing), el procesado digital de señales. Desde el diseño de filtros digitales (FIR - Finite Impulse Response e IIR - Infinite Impulse Response) hasta el análisis espectral, pasando por los conversores ADC y DAC, etc.


En esta ocasión quiero plasmar aquí para futuras consultas y para todo aquel al que le pueda venir bien, un pequeño estudio sobre una de las herramientas matemáticas más importantes en el procesado digital de señales, se trata de la Transformada de Fourier y más concretamente de la FFT (Transformada Rápida de Fourier).


La FFT es una herramienta o proceso matemático que nos permite transformar una señal en el dominio del tiempo al dominio de la frecuencia. Habitualmente solemos representar las señales en el dominio del tiempo, mostrando su amplitud y frecuencia en función del tiempo, pero en el caso de la transformada de Fourier de lo que se trata es de obtener los valores de frecuencia, amplitud o magnitud y fase de una señal "compleja" que puede estar compuesta por varias señales de distintas frecuencias y amplitudes, así como de una componente en continua (DC - Direct Current).


Supongamos que tenemos una señal compuesta por una componente en continua de 2 voltios, más una señal de 50Hz y 3.3 Voltios y otra de 75Hz 1.35Voltios, como la siguiente:


ph1 = pi*-30/180
ph2 = pi*90/180
S1 = 3.0 * cos(2*pi*50*t+ph1)
S2 = 1.5*cos(2*pi*75*t+ph2)
Signal = 2 + S1 + S2


cuya representación gráfica sería la siguiente:


Partiendo de esta base, podemos calcular la FFT por ejemplo utilizando MATLAB, de la siguiente manera:


Y = fft(Signal, N);     % Calculo de la FFT
YM = (abs(Y));         % Modulo o Magnitud de los N valores de la FFT
plot(YM(1:N));         % Grafica de la FFT


Lo que hacemos en primer lugar es calcular la FFT de la señal, lo cual dejará en el array 'Y' una lista de N valores de números complejos en la forma a+bi. Posteriormente, se calcula la magnitud o módulo de dichos valores y se almacena en un nuevo array 'YM' (sqrt(a^2 + b^2)) y finalmente mostramos la gráfica resultante, la cual podemos ver a continuación:




En esta gráfica ya podemos ver como en N=0 tenemos un pico con un valor de 512 y correspondería con una señal de frecuencia 0Hz, lo cual sabemos que se corresponde con la componente continua (DC) de la señal. El siguiente "pico" que observamos es el de la señal de 50 Hz con un módulo de 380 aprox. y por último otro pico que corresponde con la señal de 75Hz y un módulo de 190 aprox.


Llegados a este punto ya podemos ver como con la FFT estamos siendo capaces de obtener las distintas frecuencias que componen la señal "compleja" original.


En otro post, veremos como calcular la amplitud y la fase de ambas señales así como la tensión de la componente continua u offset de la señal original.

Comentarios

Entradas populares de este blog

Como usar el TL431 (muy facil)

En este artículo, no vamos a entrar en el funcionamiento interno de este IC, ni tampoco en sus características técnicas, puesto que para esos fines ya existe su hoja de datos correspondiente. Más bien, lo que pretendo aquí es dejar constancia de como podemos utilizar este IC desde un punto de vista práctico, útil y sobre todo de una manera sencilla, con el objetivo de que cualquiera pueda utilizarlo. Si has llegado hasta aquí, probablemente ya sabes que por internet hay mucha información sobre este IC, pero también bastante confusa o excesivamente técnica, sin mostrar tan siquiera un ejemplo de funcionamiento, o como calcular sus pasivos. Pues se acabó, a partir de hoy y después de leer este post, ya te quedará claro como utilizar el TL431 para obtener una tensión de referencia estable y precisa. Vamos al grano y que mejor que empezar aclarando que el TL431 NO ES EXACTAMENTE UN ZENER como se empeñan en decir en muchos sitios, es verdad que se le conoce como el Zener Progra

Expresión Regular para números en Notación Científica (1.5e-10)

No cabe duda que las expresiones regulares tienen un potencial de mucho valor a la hora de analizar textos, ya sea para marcado, búsqueda de patrones, o incluso la programación de un compilador, un analizador de frases, de expresiones matemáticas, etc.   En esta ocasión he tenido que echar mano de ellas para el análisis de textos matemáticos en los cuales aparecen números en Notación Científica (con exponentes del tipo 1.5E-10). Pues bien, una expresión regular que me está funcionando bastante bien es la siguiente:   [-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?    Esta expresión regular se puede descomponer en los siguientes bloques, para poder interpretarla con mayor facilidad:  El primer bloque [-+]? está indicando que el número podría estar precedido opcionalmente de un signo - o un signo + El segundo bloque [0-9]* indica que podría aparecer un número de 0 o más dígitos del 0 al 9  El tercer bloque indica que también de manera opcional podría aparecer un pun

Programadores de Malware ¿Malas prácticas?

Cuando uno se enfrenta al análisis de un nuevo malware, son muchos los frentes que podemos abrir y los enfoques que podemos darle. Como es lógico, un primer paso será identificar que es un malware de aquello que no lo es, y en ocasiones esto es preciso hacerlo con la mayor rapidez posible. Muchas veces no contamos con el tiempo necesario para hacer un análisis completo a priori, y lo único que necesitamos es tomar decisiones tempranas para iniciar todos los protocolos oportunos ante una nueva muestra "maléfica". Parece lógico pensar, que un código que inicialmente está ofuscado, empaquetado, o que hace uso de determinadas APIs del sistema, ya tiene una cierta probabilidad de ser malware y por lo tanto empezar a tratarlo de manera especial. Durante estos días he estado analizando un nuevo malware, posiblemente una variante de tantas que andan circulando en estos días por internet. En concreto, lo que tengo entre manos es un Ransomware, si compañeros, un especimen