Ir al contenido principal

Transformada Rápida de Fourier (FFT) - 1

Una de las cosas (de tantas y tantas) que me ha llamado siempre la atención son los temas relacionados con DSP (Digital Signal Processing), el procesado digital de señales. Desde el diseño de filtros digitales (FIR - Finite Impulse Response e IIR - Infinite Impulse Response) hasta el análisis espectral, pasando por los conversores ADC y DAC, etc.


En esta ocasión quiero plasmar aquí para futuras consultas y para todo aquel al que le pueda venir bien, un pequeño estudio sobre una de las herramientas matemáticas más importantes en el procesado digital de señales, se trata de la Transformada de Fourier y más concretamente de la FFT (Transformada Rápida de Fourier).


La FFT es una herramienta o proceso matemático que nos permite transformar una señal en el dominio del tiempo al dominio de la frecuencia. Habitualmente solemos representar las señales en el dominio del tiempo, mostrando su amplitud y frecuencia en función del tiempo, pero en el caso de la transformada de Fourier de lo que se trata es de obtener los valores de frecuencia, amplitud o magnitud y fase de una señal "compleja" que puede estar compuesta por varias señales de distintas frecuencias y amplitudes, así como de una componente en continua (DC - Direct Current).


Supongamos que tenemos una señal compuesta por una componente en continua de 2 voltios, más una señal de 50Hz y 3.3 Voltios y otra de 75Hz 1.35Voltios, como la siguiente:


ph1 = pi*-30/180
ph2 = pi*90/180
S1 = 3.0 * cos(2*pi*50*t+ph1)
S2 = 1.5*cos(2*pi*75*t+ph2)
Signal = 2 + S1 + S2


cuya representación gráfica sería la siguiente:


Partiendo de esta base, podemos calcular la FFT por ejemplo utilizando MATLAB, de la siguiente manera:


Y = fft(Signal, N);     % Calculo de la FFT
YM = (abs(Y));         % Modulo o Magnitud de los N valores de la FFT
plot(YM(1:N));         % Grafica de la FFT


Lo que hacemos en primer lugar es calcular la FFT de la señal, lo cual dejará en el array 'Y' una lista de N valores de números complejos en la forma a+bi. Posteriormente, se calcula la magnitud o módulo de dichos valores y se almacena en un nuevo array 'YM' (sqrt(a^2 + b^2)) y finalmente mostramos la gráfica resultante, la cual podemos ver a continuación:




En esta gráfica ya podemos ver como en N=0 tenemos un pico con un valor de 512 y correspondería con una señal de frecuencia 0Hz, lo cual sabemos que se corresponde con la componente continua (DC) de la señal. El siguiente "pico" que observamos es el de la señal de 50 Hz con un módulo de 380 aprox. y por último otro pico que corresponde con la señal de 75Hz y un módulo de 190 aprox.


Llegados a este punto ya podemos ver como con la FFT estamos siendo capaces de obtener las distintas frecuencias que componen la señal "compleja" original.


En otro post, veremos como calcular la amplitud y la fase de ambas señales así como la tensión de la componente continua u offset de la señal original.

Comentarios

Entradas populares de este blog

Como usar el TL431 (muy facil)

En este artículo, no vamos a entrar en el funcionamiento interno de este IC, ni tampoco en sus características técnicas, puesto que para esos fines ya existe su hoja de datos correspondiente. Más bien, lo que pretendo aquí es dejar constancia de como podemos utilizar este IC desde un punto de vista práctico, útil y sobre todo de una manera sencilla, con el objetivo de que cualquiera pueda utilizarlo. Si has llegado hasta aquí, probablemente ya sabes que por internet hay mucha información sobre este IC, pero también bastante confusa o excesivamente técnica, sin mostrar tan siquiera un ejemplo de funcionamiento, o como calcular sus pasivos. Pues se acabó, a partir de hoy y después de leer este post, ya te quedará claro como utilizar el TL431 para obtener una tensión de referencia estable y precisa. Vamos al grano y que mejor que empezar aclarando que el TL431 NO ES EXACTAMENTE UN ZENER como se empeñan en decir en muchos sitios, es verdad que se le conoce como el Zener Progra

WinRT with C++ Standard vs C++/CX

OFFTOPIC: Nota: Hoy he decidido escribir esta publicación del blog en inglés. Note: Today I decided to write this blog post in English. In a new application than I am developing for a company, I had to decide if to make use of C++/CX (C++ with Component Extension) or make all the main stuff in C++ standard and ABI/COM. All of you than have had to work with COM (Component Object Model) and fighting with the interfaces, reference count, etc. known the tricky and heavy that it can become. As an example of the easy approach using C++/CX, I am creating a new Uri object, like this: auto uriEasyWay = ref new Windows::Foundation:: Uri ( http://www.manuelvillasur.com ); assert (wcscmp(uriEasyWay->AbsoluteUri->Data(), L"http://www.manuelvillasur.com/" ) == 0); Now, I going to show you the more difficult approach using C++ Standard and  ABI/COM interfaces: HSTRING_HEADER header = {}; HSTRING string = nullptr ; HRESULT hr = WindowsCreateStringRefer

Árbol binario de expresión y Notación Posfija (II)

En una publicación anterior, hablaba sobre que es la notación posfija, para que puede ser útil y mostraba un pequeño ejemplo con una expresión aritmética simple: (9 - (5 + 2)) * 3 Pues bien, hoy voy a mostraros como podemos crear el árbol binario correspondiente para analizar o evaluar esta expresión, haciendo uso del recorrido en postorden. Lo primero que debemos hacer es crear el árbol, respetando las siguientes reglas: ⦁ Los nodos con hijos (padres) representarán los operadores de la expresión. ⦁ Las hojas (terminales sin hijos) representarán los operandos. ⦁ Los paréntesis generan sub-árboles. A continuación podemos ver cómo queda el árbol para la expresión del ejemplo (9 - (5 + 2)) * 3: Si queremos obtener la notación postfija a partir de este árbol de expresión, debemos recorrerlo en postorden (nodo izquierdo – nodo derecho – nodo central), obteniendo la expresión: 952+-3x Así, si quisiéramos evaluar la expresión, podemos hacer uso de un algoritmo